Electrochemical Properties of Spinel $LiMn_2O_{4-\delta}F_{\delta}$ for Cathode Materials of Secondary Lithium-ion Battery

Zhao Yong CHEN, Xing Quan LIU, Zuo Long YU*

Chengdu Institute of Organic Chemistry, The Chinese Academy of Sciences, Chendu 610041

Abstract: The spinel LiMn₂O_{4.8}F₈ cathode materials were synthesized by solid-state reaction, with calculated amounts of LiOH • H₂O, MnO₂(EMD), LiF. The results of electrochemical test demonstrated that these new materials exhibited excellent electrochemical properties. Its initial capacity reached ~115 mAh • g⁻¹ and reversible efficiency is about 100%. After 60 cycles, its capacity was still around 110 mAh • g⁻¹, with nearly 100% reversible efficiency.

Keywords: Spinel Li $Mn_2O_{4-\delta}F_{\delta}$, cathode, materials.

In recent years, with the development of all sorts of cellular phones, camcorders, laptop computers, the lithium-ion secondary batteries based on the use of manganese-lithium oxide $LiMn_2O_4$ with low toxicity and cost attract much attention. But the $LiMn_2O_4$ cathode material has the disadvantage of poor structural instability as a result of the Jahn-Teller effect caused by Mn^{3+} . Many researchers have made great efforts to improve its structural stability by cation substitution, but little reward has been received. We adopted anion substitution as a new method to reach this goal, and the new $LiMn_2O_{4-\delta}F_{\delta}$ cathode material exhibited excellent electrochemical properties.

The spinel LiMn₂O_{4- δ}F_{δ} cathode materials were synthesized with the mixture of LiOH·H₂O, MnO₂(EMD) and LiF. At first, this mixture was ball-milled in a planetary micro mill with stainless steel balls. Alcohol was added for dispersing to form a slurry which was ground overnight with combined action of shaking and rotation actions. After milling, the alcohol in the slurry precursors was evaporated. Finally, the precursors were calcined at 730°C for 36 h.

A series of spinel $\text{LiMn}_2\text{O}_{4-\delta}F_{\delta}$ compounds with different fluorine contents (0, 0.1, 0.2, 0.3) were synthesized as designed above.

The positive electrode consisted of 80wt% LiMn₂O_{4- δ}F_{δ} and 15wt% acetylene black and 5wt% polytetrafluoroethylene(PTFE) as a binder, and metal Al was used as collector. The electrolyte solution consists of ethylene carbonate + diethylene carbonate (1:1)+1 mol/L LiClO₄. Lithium metal foil was used as the counter electrode during electrochemical measurements. All cell assemblies were put in a dry box filled with argon gas. All electrochemical tests were carried out in a DC-5 fully automatic program test instrument, with constant current.

X-ray power diffraction (XRD) was carried out by means of a Rigaku D/max-ra

Zhao Yong CHEN et al.

with Cu K α radiation and a graphite monochromator.

Transmission electron microscopy (TEM) was carried out using JEOL JEM-100CX microscope. The contents of fluorine (δ) was determined by chemical analysis (CA).

Chemical Analysis (CA)

In order to find out the relationship between the electrochemical properties and the contents of fluorine of the cathode material, a series of $LiMn_2O_{4-\delta}F_{\delta}$ with different fluorine contents were prepared. The chemical analysis indicated that the δ values in the samples were much smaller than the designed values. For example, the δ value found were 0, 0.016, 0.021, 0.04 corresponding to the designed values of 0, 0.1, 0.2, 0.3 respectively. It was caused by the fluorine loss at high calcination temperature.

XRD and Structure

The crystal structures of $LiMn_2O_{4.\delta}F_{\delta}$ were characterized by XRD, as shown in **Figure 1**. It is found that almost all of the diffraction peaks are attributable to the spinel structure of $LiMn_2O_4$. The crystal data of the samples are nearly the same as those of standard $LiMn_2O_4$, except that at 2θ =58°, 64°, 66°. For F-inserted samples, these peaks

Figure 2 Initial charge-discharge capacity and fluorine contents in $LiMn_2O_{4\cdot\delta}F_{\delta}$

456

Figure 3-1 Figure of capacity

1 and 2, the charge-discharge cycle figure of $LiMn_2O_{4\cdot\delta}F_{\delta}$ with $\delta\!\!=\!\!0.016;$ 3 and 4, the charge-discharge cycle figure of $LiMn_2O_{4\cdot\delta}F_{\delta}$ with $\delta\!\!=\!\!0.014;$ 5 and 6, the charge-discharge cycle figure of $LiMn_2O_{4\cdot\delta}F_{\delta}$ with $\delta\!\!=\!\!0.$

→1 **=** 2 **→** 3 **=** 4 **=** 5 **•** 6

1 and 2, the charge-discharge cycle figure of $LiMn_2O_{4\cdot\delta}F_{\delta}$ with $\delta\!\!=\!\!0.040;$ 3 and 4, the charge-discharge cycle figure of $LiMn_2O_{4\cdot\delta}F_{\delta}$ with $\delta\!\!=\!\!0.021;$ 5 and 6, the charge-discharge cycle figure of $LiMn_2O_{4\cdot\delta}F_{\delta}$ with $\delta\!\!=\!\!0.$

Zhao Yong CHEN et al.

split into two peaks with different intension and width. Tarascon¹ discovered that the lattice constant of F-inserted lithium manganese spinels gradually increased with increasing fluorine contents. We consider that there is a tensile force between fluorine ion and oxygen ion with negative charge, it leads to the increase of the lattice parameters.

Electrochemical test and structural model

Figure 2 shows the relation between the initial charge -discharge capacity and fluorine contents in spinel $\text{LiMn}_2\text{O}_{4-\delta}\text{F}_{\delta}$. The initial charge-discharge capacity of samples is gradually becoming lower with increasing F-content.

Figure 3 shows the cycle-capacity of spinel $LiMn_2O_{3.979}F_{0.021}$ with different fluorine contents. We can find that the spinel $LiMn_2O_{3.979}F_{0.021}$ exhibits excellent stability. After cycling for 60 times, the capacity has not exhibited any loss, and the charge-discharge capacity is still around 110 mAh \cdot g⁻¹.

From the results of electrochemical test, we can draw the conclusion that when δ =0.021, the capacity and stability of the cathode materials reached to the best state, its initial capacity reached ~115 mAh • g⁻¹ and reversible efficiency was about 100%, after 60 cycles, its capacity was still around 110 mAh • g⁻¹, with nearly 100% reversible efficiency. It seems that the new positive material is still suitable to reinsert lithium ion. We think that the inserted fluorine could stabilize the high oxide state of Mn⁴⁺ and then inhibit the Jahn-Teller effect.

Reference

1. Glenn. G. Amatueci. Raritani, Jean-Marie Tarascon. United States Patent Number 5674645.

Received 13 September 1999 Revised 6 March 2000